

Sébastien Martinerie

- General information
- What is 3D printing?
- SPOT 3D printers
- The prototyping cycle
- Expected behavior
- Steps for successful 3D printing
- Demo

https://make.epfl.ch/wiki/public/spot_-_3d_printing/start

- Every Bachelor and Master students of EPFL
- Who followed the specific training
- For what?
 - MAKE interdisciplinary projects
 - Courses
 - Semester/Master projects
 - Other accredited projects and associations

Printiobs

- Otherwise:
 - Personal projects are accepted under specific conditions (wiki). Please ask first.
 - For any non-credited professional projects (internship, research, private company, etc.), please go to <u>AFA</u> (additive manufacturing professional workshop).

A modern and evolutive space

A high volume workshop Per year:

8'000 print jobs (30~40'000 parts)

400+ kg of printed filament (130 km)

1'200 days of printing

A community of users

1'000+ trained users

Number of printers

Printed filament (kg)

Layer by Layer

Main advantages:

- Complex geometries capability
- No "minimal volume"
- Fast "design to production"
- Efficiency (energy, wastes...)

Biggest limitations:

- Materials and properties
- Dimensions, accuracy
- NO 100% SUCCESS RATE!

3D PRINTING TRAININ

WHAT IS 3D PRINTING?

The most common 3D printing types:

Type Name	Material extrusion Fused deposition modeling (FDM)	VAT Polymerization Stereolithography (SLA) Digital light processing (DLP)	Material jetting	Powder bed fusion Selective laser sintering (SLS) or melting (SLM)
Principle				
Materials	Polymer filaments	Photopolymer resins	Photopolymer resin	Thermoplastic, metal or ceramic powder
Strengths	Lowest cost, wide range of functional materials, simple	Smooth surface finish, fine details, complex geometries, special properties	Surface finish, multicolor and multi-material	Functional parts, mechanical properties, complex geometries
Availability	SPOT SKIL AFA	SPOT AFA	AFA	AFA (polymers) External partners (metals)

PRUSA MK3S+ AND MK4

- Open access printers (level 2)
- Technology: FDM (filament)
- Build volume (x,y,z): 250 x 210 x 210 mm
- Materials:
 - **PETG** (0,05 CHF/g)
 - Technical PETG (HT, PTFE, CF)
 - TPU (0,1 CHF/g)
- Easy to use, precise, reliable, sustainable
- For 95% of your needs

See available materials
HERE

SPOT 3D PRINTERS

- Only under supervision (level 3)
- Technology: FDM (filament) 2 extruders
- Build volume (x,y,z): 360 x 360 x 360 mm
- Materials:
 - PETG
 - Technical PETG (HT, PTFE, CF)
 - TPU
 - Soluble supports
- For bigger and multi-material parts

PRUSA PRO HT90

- Only under supervision (level 3)
- Technology: FDM (filament) 1 extruder
- Build volume (x,y,z): Ø300 x 400 mm
- Materials:
 - PETG and technical PETG
 - Other technical materials (ASA, PC, PA, etc.)
 - PEEK Family!
- For bigger parts and/or more technical materials

SPOT 3D PRINTERS

- Only under supervision (level 3)
- Technology: SLA (resin)
- Build volume (x,y,z): 145 x 145 x 185 mm
- Materials:
 - Standard
 - Clear, high rigidity, elastic, high temp, etc.

For high quality surfaces, precision, details, specific properties

SPOT RECYCLING PROJECT

3DEVO extrusion line

- Only under supervision (level 3)
- Ongoing project to recycle PET-G waste to make our own filament > wiki
- Sorting > shredding > drying > extruding
- Around 20 kg of SPOT-G per year

THE PROTOTYPING CYCLE

DESIGN

Iterating is part of the process.
As well as learning from failures.

But don't forget to learn in the process!

THE PROTOTYPING CYCLE

YOUR COACHES CAN HELP YOU!

PLEASE SHOW US YOUR PROJECT AS EARLY AS POSSIBLE

3D PRINTING TRAINING

THE PROTOTYPING CYCLE

Electronics 3D printing

Use the right tools for your needs!

EXPECTED BEHAVIOR

You're part of a community: respect the others!

The rules are the same for everyone and are made so that this space works and serves everyone equally and continuously.

RESPECT

SHARE

STAY SAFE

BE PROFESSIONAL AND RESPONSIBLE

EXPECTED BEHAVIOR

TOWARDS TOOLS AND EQUIPMENT

RESPECT

- No dust, no food, no drink
- Keep the place and the printers clean
- Please clean your printbed before leaving
- Use only the materials and tools available in the space (you can not bring your own filament)
- Don't take anything out of the room
- Print responsibly
- Print only your own G-Codes

SHARE

- Share the printers
- Short printjobs during the day, long printjobs during the night
- Store filament properly in the dry cabinet
- Communicate if something is missing or if you have any suggestions
- Communicate if something's wrong with a printer (put in maintenance)

EXPECTED BEHAVIOR

TOWARDS OTHER PEOPLE

RESPECT

- Handle other people's parts with care
- Don't remove parts from printbed if they're not yours
- Don't lie on your project budget
- Respect everybody

SHARE

- Never hesitate to ask for help
- Share your experience and help each other
- Be nice, don't judge
- Share your ideas, success and lessons learned

YOUR COACH

- Not a cop, not a cleaner > Experienced engineer, specialized in 3D Printing for 20+ years.
- Many tips and experience to share with you, at each step of your project.
- Here to help you and everybody at the same time, not to judge you. Don't be shy;)

STAY SAFE

Access restrictions

- Don't enter the "under supervision" area without the coach's permission
- Don't let unauthorized people enter the room
- Don't work alone in the space after 8pm and during weekends
- Don't work if you're "tired"

Potential risks

- Flammable chemicals
 - No open flame and no smoking
- Hot surfaces and moving parts
 - Don't touch the printers while running or before proper cooling
 - Tie your hair and be careful with loose accessories and computers

Personal protection equipment

- Use the appropriate PPE when indicated
- **IMPORTANT:** Safety glasses are mandatory for post processing (support removal)

EXPECTED BEHAVIOR

Phone

For all emergencies, 24h/24

- From an EPFL landline: 115
- From a personal mobile phone: 021 693 30 00
- From the EPFL Campus app: SOS

Available treatment devices

IN CASE OF PROBLEM

First aid kit

- To treat minor injuries.
- For major injuries: call 115

Eye/face wash kit

In case of splashing in the eyes:

- 1. Act quickly
- 2. A colleague calls 115
- 3. Flush your eyes thoroughly until help arrives

Notify the COSEC (coach) if you use any of these devices

In case of fire

If you know how to use it

- Fire blanket in the room.
- Fire alarm and fire extinguisher in the corridor

Most important: give the alarm and help people out

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

- Each step is important, takes time and determines the others.
- Don't waste time and materials. A good design and a good slice reduce the number of iterations, failures and breakdowns.
- Schedule your prints in advance and take some margin.
- Some manual finishing work is part of the job.
- Asking for help is always OK.

STEPS FOR SUCCESSFUL 3D PRINTING

- Consider functions, working conditions, constraints, assemblies...
- Anticipate the following steps:
 - How will you print the parts, in which orientation, which material?
 - On which type of printer will you print? What is it capable of?
 - Can you reduce the amount of material, printing time and manual finishing?
- > Export each part in a STEP or STL file

STEPS FOR SUCCESSFUL 3D PRINTING

DESIGN (for manufacturing)

- Using your favorite CAD software
- Determine how your prototype will work
 - Functions
 - Assemblies
 - · Working conditions, constraints...
- Anticipate what's coming next:
 - How will you manufacture/print the parts, in which orientation, in which material?
 - On which type of printer will you print? What is it capable of (size, precision, etc.)?
 - Can you improve strength and reduce the amount of material, printing time and manual finishing?
- Think Additive, not machining nor injection molding.
- Export each part in .STEP (or .STL) format

STEPS FOR SUCCESSFUL 3D PRINTING

DESIGN (for manufacturing)

Wall thickness

Min. 0.8 mm

Min. 12 mm

Hole and pin diameter

Min. 2 mm

Min. 4 mm

Embossed and engraved details

Min. 0.8 mm wide and high

Avoid downward facing filet

Add filets and ribs

STEPS FOR SUCCESSFUL 3D PRINTING

DESIGN (for manufacturing)

Avoid large rectangular bases

Rounded corners

Laser cut base

/ Sébastien Martine

STEPS FOR SUCCESSFUL 3D PRINTING

DESIGN (for manufacturing)

Designing assemblies > Positioning elements

- If you need to assemble parts together, you should not forget to ensure a good positioning by designing positioning elements such as:
- Pins and holes of any shape (prefer standard pins when possible)
- Any other positioning element.
- Don't forget the tolerance consideration of next slide.

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

DESIGN (for manufacturing)

Designing assemblies > Tolerances

- The printed dimensions are generally larger than the 3D model (about 0.1 mm everywhere).
- Leave a distance between parts for easy assembly. Typical value for FDM 3D printing: 0.1 – 0.2 mm
- Use chamfers for easy insertion.
- See the tolerance test parts in the room, or print your own to determine precise tolerances

STEPS FOR SUCCESSFUL 3D PRINTING

DESIGN (for manufacturing)

Designing assemblies > Fixing parts together

- There are many options to secure parts together.
- You can use:
 - Glue (strong but not reversible)
 - Magnets (reversible but not strong)
 - Screws (strong and reversible) > See next slide
 - Other options like snap fits, zip ties, etc.
 - Tips and samples coming soon > Ask your coach

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

DESIGN (for manufacturing)

Designing assemblies > Screwing parts together

- 3D printing threads or threading 3d printed parts is generally not a good idea (not precise and strong enough)
- Use standard elements such as:
- Nut pockets
- Threaded inserts > Check the hole dimensions before printing
- Tips and tutorial > Wiki

STEPS FOR SUCCESSFUL 3D PRINTING

- Transform geometry (STL, STEP) into instructions for the printer (G-code)
- Printer model, material, advanced settings
- Part orientation, support structure (if necessary)
- A bad slicing can ruin your print and even the printer > Double check before printing!
- > Export G-code on an SD card (MK3) or USB stick (MK4)

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

- Configure PrusaSlicer
 - Use only UpToDate PrusaSlicer
 - Configure the right printers and filament profiles

https://make.epfl.ch/wiki/public/spot_-_3d_printing/prusaslicer_configuration

- > Prusa i3 MK3S+ with 0.4 mm nozzle
 - > SPOT PETG MK3S+
- > Prusa MK4 Input Shaper with 0.4 mm nozzle
 - > SPOT PETG MK4IS
 - For other printers and materials, ask your coach or refer to documentation

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

Start slicing

- Work in Expert mode
- Import your STEP or STL files
- Choose your printer type and filament
- Choose your print settings
 - 0.15 mm or **0.2 mm** layer height
 - Quality or Structural settings Not Speed!

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

Orient your part:

A good part orientation is decisive for a successful print. Keep in mind the following factors

- Tensile strength is lower along the Z axis (layers separation)
- The best precision/resolution is on XY plan
- Supports affect the surface quality once removed

If you don't find the good orientation, try to change your design.

Choose which surface will face the printbed.

Preferably use this tool!

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

Generate supports:

- You can't print in the air!
- Surfaces that are not supported enough can ruin your print (and the printer).
- In case of doubt, place supports everywhere.
- Remember you will have to access the support for removal.
- And that supported surfaces are altered.
- You can find different support styles here:
 - Print settings > Support material > Style
 - Snug and Organic are particularly easy to remove

Top contact Z distance:

Bottom contact Z distance:

For large and low supported areas

For small and high supported areas

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

Generate supports:

- Small bridges are fine. Small horizontal holes don't need to be supported
- Overhangs above 40° are ok

 You can also place supports selectively using the paint-on supports tool and the "For support enforcers only" option.

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

- Generate supports:
- Warning: avoid supports printed on top of a flat printed surface.

- The need for supports can be optimized by changing:
 - your design (splitting parts, adding chamfers, etc.)
 - and/or your part orientation

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

TIP: Prevent warping or bad adhesion to the bed

Big parts

Thin and high parts

> Add a brim

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

PREPARE (aka slice)

TIP: Increase strength

- Part orientation
 - Avoid layers delamination
- Infill
 - Small strength increase
 - Big time and filament usage increase
- Perimeters
 - Big strength increase
 - Also increases print time
 - Allows you to mechanically correct the part afterward (increase a hole diameter)
 - Improves sealing as well as compliance capability
 - Print settings > Layer and perimeters > perimeters
 - > 2 (default) -> 4 to 6

STEPS FOR SUCCESSFUL 3D PRINTING

Unlock the printer on make.epfl.ch/3dprint and choose your budget

If your project's list is wrong > update it on make.epfl.ch/training

- Do the different checks (printbed, filament, nozzle)
- Insert your SD card or USB stick
- Start printing and stay for at least one layer

Wiki

https://make.epfl.ch/wiki/public/spot_-_3d_printing/how_to_unlock_a_printer_ using_internet

3D PRINTING TRAINING

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

- **Respect** the tools and the rules
- Don't take other user's parts off the printbed.
- > Put the previous printbed on the table and take a **new clean printbed**.
- Place the printbed properly

> Tutorial for filament change

Check if the nozzle is clean

If not, preheat the printer and remove excess filament with a plier or ask for help

https://make.epfl.ch/wiki/public/spot__ _3d_printing/load_filament

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

- Remove the printbed from the printer
- Remove carefully your parts from the printbed and the supports from your part
- Clean your workplace and printbed, manage your wastes
- Sanding, drilling, assembling > In the atrium

3D PRINTING TRAINING

STEPS FOR SUCCESSFUL 3D PRINTING

After printing

- Wear safety glasses!
- Remove your part from the printbed Please, avoid scratching the surface
 - Remove the **supports** > use pliers

- Clean the workplace
- Clean the printbed (soap and water)
- Use the PETG bin!
 - Only for dust-free PETG parts and supports
 - No screws, inserts, glue, dust
 - Sanding, drilling, assembling, etc. > In the atrium

RESSOURCES

Your 3D printing coach is Sébastien Martinerie

	Monday	Tuesday	Wednesday	Thursday	Friday
Morning (9h30-12h)	YES	-	YES	-	YES
Afternoon (13h-17h30)	YES	-	YES	YES	YES

- E-mail: <u>sebastien.martinerie@epfl.ch</u>
- Slack

HAPPY PRINTING @SPOT!!

